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1. Introduction 
 
1.1 Overview of Project 
1.1.1 Laser guidance is used extensively in the modern battlefield on multiple weapon 

systems ranging from rockets to missiles to guided bombs. The guidance scheme relies 
on a laser designator to illuminate a target with reflected light, and the weapon system 
will contain a seeker for homing in on the energy reflected from the target. The 
traditional target designator operates in the 1064 nm spectral band, with pulsed light 
source of the solid-state Nd:YAG laser.  

 
1.1.2 These illuminators need to have high brightness and speckle free output beam.  

Additionally, these need to be capable of being modulated with high-speed electrical 
pulse train to generate high levels of peak optical power, to work in conjunction with 
electronic gating function of associated equipment. Furthermore, there is a need for 
built-in collimating optics to provide a low divergence output light beam. With the 
proliferation of use of such equipment in the field, there is an urgent need to develop 
designators and illuminators in the “eye-safe” spectral region of around 1550 nm. 

 
1.1.3 The Superluminescent LED (SLED) technology is ideally suited to fulfill the above 

requirements. It is a broadband incoherent light source with Gaussian beam profile, 
which allows for speckle-free imaging and good collimation to a low divergence. In 
this project, the SLED chip will be designed for high output power, broadband spectral 
output and high-speed modulation capability, along with the development of a 
matching opto-mechanical package containing collimating optics. Another goal in this 
effort is to explore SLED designs to improve the power efficiency, as high efficiency 
sources are critical for field operations. 

 
1.1.4 Design of the SLED light source will target it to be rugged, tolerant of harsh operating 

environments and field installable. By incorporating DFX concepts and methodology in 
the development project right from the beginning, the developed optical component 
will be able to be subsequently manufactured in volume, and pressed into service for 
the warfighter in a timely manner. 

 
1.1.5 Vision of this current effort extends well beyond the initial application for eye-safe 

target designators. The SLED core platform will be developed in the initial exploratory 
phase so as to be scalable. Subsequent effort in follow-on phase projects could expand 
the range of wavelength output and beam collimation. This will result in a complete 
suite of illuminator elements covering a wide range of wavelengths and collimation 
optics. This will pave the way for providing the source of illumination suitable for 
hyperspectral imaging systems. A customized combination of illuminator elements can 
thus be selected to suit the profile of each mission and requirement. 
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1.2 Organization of Project 
1.2.1 This 12-month project is organized into three concurrent development efforts in  

a) SLED chip design and fabrication development 
For this part, SLED chip is developed to meet target performance, specifically that 
of output power and power efficiency. 

b) Package design and assembly development 
Here, development of the SLED package is performed to achieve good optical 
collimation and supporting high speed pulse output. 

c) Device test development 
The test methodology and test setup of SLED chip and package are also developed 
to characterize the fabricated SLED chip and assembled SLED modules. 

 
 
1.3 Target Performance 
1.3.1 The target performance of the speckle free, low coherency and high brightness SLED 

module is tabulated as follows: 
 

 Parameter Specs 
Center wavelength 1550 ± 15nm 
Spectral width (3dB) 20 to 30nm 
Modulation rise and fall time 1ns 
Pulsed output power* > 0.2W (from package) 
Output far field nearly circular 

SL
ED

 D
ev

ic
e 

Chip power efficiency (PE) 20% 
Miniature footprint (TO-8, or equivalent, form factor) 
Hermetically sealed operation 
Internal TEC (thermoelectric cooler) for operation over case 
temperature range of –40 to +40°C 
Integral collimating optics to produce output beam divergence 
of < 2mrad Pa

ck
ag

in
g 

Pl
at

fo
rm

 

Control of RLC parasitics to support high-speed modulation 
 

* ~15ns pulse width with 100kHz rep rate 
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2. SLED Chip Design and Fabrication Development 
 
2.1 Organization of Design Stages 
2.1.1 The SLED chip design and fabrication development is organized into three stages, as 

shown in Fig. 2-1. 
 

DS01 (Power-BW tuning): 
This first stage involves increasing the optical gain by increasing quantum well 
(QW) number, optimizing QW design and ridge waveguide structure, to realize 
optical power of >130 mW. 

 
DS02 (Power-BW tuning): 

In this next stage, the optical power is to be further ramped up by also increasing 
the number of QW and optimizing the QW design. 

 
DS03 (Power-BW-PE-Far field optimization): 

The design strategy in this third stage is to i) increase optical gain by increasing 
device length, ii) reduce optical loss by optimizing doping profile and waveguide 
structure, iii) reduce voltage drop by optimizing doping profile to reduce series 
resistance and iv) tune refractive index profile by optimizing waveguide epi-layer 
design. 

 
DS04 (Advanced FF refinement): 

The optical far-field mode profile of the SLED chip will be fine-tuned to best match 
the collimation optics so as to realize beam divergence of <2 mrad for the packaged 
TOSA module. 
 

Figure 2-1: SLED chip design and fabrication development organization chart 
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2.2 SLED Chip Design 
2.2.1 Several design and simulation methodologies have been adopted in the SLED chip 

design, including: 
(i) Computing optical parameters, such as gain coefficient, spontaneous emission 

coefficient, Auger recombination coefficient and optical confinement factors 
using Advanced Laser Diode Simulator (ALDS) from Apollo Photonics 

(ii) Modeling optical modes of light propagation along SLED waveguide using Beam 
Propagation Method (BPM) from Optiwave 

(iii) Solving carrier density using rate equations 
(iv) Computing electrical parameters independently from material constants and 

device parameters 
 
2.2.2 A few assumptions have been made in the SLED design, and they are 

(i) Facet reflectivity is negligible 
(ii) Waveguide structure variations along device length is not considered 
(iii) Uniform carrier density across length of SLED 
(iv) Higher order effects (e.g. scattering from defects & sidewalls, index variation 

from carrier density variations) are ignored 
 
2.2.3 In consideration of implementation of the design, optimization of other device 

parameters to maintain optical confinement and lasing suppression, as well as tuning of 
fabrication process conditions were also carried out. Table 2.1 shows the summary of 
design strategies adopted in the various development stages. 

 
Table 2-1: Chip design development stages, strategies and action 

 
 
 

• Optimize doping profile to 
reduce series resistance

• Reduce voltage drop

• Optimize doping profile
• Optimize waveguide structure

• Reduce optical loss

• Optimize waveguide epi-layer 
design

• Design refractive 
index profile

• Fine-tune QW and confinement 
layer design

• Further modification 
to match FF to 
desired profile

Advanced FF 
Refinement

DS04

• Increase device length• Increase optical gainPower, BW, PE & FF 
Optimization

DS03

• Increase QW number
• Optimize QW design

• Increase optical gainPower-BW TuningDS02

• Increase QW number
• Optimize QW design
• Optimize ridge waveguide 

structure

• Increase optical gainPower-BW TuningDS01

Proposed ActionDesign StrategyDevelopment Stage

• Optimize doping profile to 
reduce series resistance

• Reduce voltage drop

• Optimize doping profile
• Optimize waveguide structure

• Reduce optical loss

• Optimize waveguide epi-layer 
design

• Design refractive 
index profile

• Fine-tune QW and confinement 
layer design

• Further modification 
to match FF to 
desired profile

Advanced FF 
Refinement

DS04

• Increase device length• Increase optical gainPower, BW, PE & FF 
Optimization

DS03

• Increase QW number
• Optimize QW design

• Increase optical gainPower-BW TuningDS02

• Increase QW number
• Optimize QW design
• Optimize ridge waveguide 

structure

• Increase optical gainPower-BW TuningDS01

Proposed ActionDesign StrategyDevelopment Stage
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2.3 Process and Outcome 
 Power-BW Tuning (DS01 and DS02) 
2.3.1 The base design of the SLED chip is based on 5 quantum wells, whereby an optical 

power of 90 mW has been obtained. For the design stages of DS01 and DS02, the 
number of quantum wells in the active region is increased to 7 and 9 respectively. The 
SLED device length is also increased from 1.5 mm to 2 mm in both DS01 and DS02. 

 
2.3.2 Figure 2-2 shows the measured performance of SLED fabricated based on designs of 

DS01 and DS02. The SLEDs are characterized at chip-on-submount (CoS) level with 
optical power obtained using Keithley L-I-V tester and optical spectrum captured using 
ANDO A6317B optical spectrum analyzer (OSA). 

(a)      (b) 
 

Figure 2-2: Optical performance of DS01 and DS02 SLED 
(a) Optical power vs current injection, and (b) Optical spectrum 

 
2.3.3 A higher optical gain achieved via a larger number of quantum well and longer device 

length resulted in high optical powers of 130 and 150 mW at 1 A current injection for 
DS01 and DS02 designs respectively. The optical spectrum 3dB bandwidth is 
maintained around 22 to 32 nm in both stages, demonstrating that incoherency has not 
been affected by the higher optical power. Comparison of the simulation and 
experimental results is shown in Fig. 2-3. The optical power measured from the SLED 
devices in both stages are close to the simulated power. Figure 2-4 illustrates the optical 
far field of the SLED CoS measured using Photon Inc Goniometric Radiometer. Near-
circular far field has been obtained from the SLEDs. 
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Figure 2-3: Comparison between simulation and experimental results of DS01 and DS02 
 

 
       (a)           (b) 

 
Figure 2-4: (a) Comparison of optical far field angles, (b) 3D Optical far field profile for DS02 

 
Power, BW, PE & FF Optimization (DS03) 

2.3.4 To further push up the optical power output and also the power efficiency of the SLED, 
the device length is increased from 2 mm (DS02) to 3 mm. In addition, the doping 
profile of the SLED PIN diode is optimized to realize lower internal optical loss. This is 
implemented with the introduction of a new InP buffer layer directly above the active 
waveguide that has a lower p-type doping (high p-type doping is known to result in 
higher optical loss), as shown in Fig. 2-5. 
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Figure 2-5: Optimization of doping profile with lighter doping p-InP buffer 
 

2.3.5 Figure 2-6 shows the dependence of the absorption loss and bulk resistance of the 
SLED ridge waveguide with respect to the p-InP buffer thickness based on the 7QW 
structure design. It can be clearly seen that the absorption loss drops exponentially with 
the p-InP buffer thickness, but a thicker p-InP buffer layer also leads to an increase in 
the bulk resistance. Hence, there is a need to optimize the p-InP buffer layer thickness 
to realize the best SLED performance, and this is projected to be around 150 nm with 
an estimated power efficiency of 20%. 
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Figure 2-6: Absorption loss and bulk resistance of ridge vs p-InP buffer thickness 
 

2.3.6 The four designs of DS03-A to D are outlined in the following Table 2-2. Figure 2-7 
shows the expected optical powers at 1 A for the four respective designs. The estimated 
power for the best DS03-D design (with 9QW, 3 mm device length and doping 
optimization) is ~290 mW. 
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Table 2-2: Design optimization implemented in DS03 
 

9QW @3mm
Doping Opt
(T: 290mW)

Length ↑
⇒

9QW @2mm
Doping Opt
(T: 200mW)

DS03-D

9QW @2mm
Doping Opt
(T: 200mW)

Doping Opt
⇒

9QW @2mm
(150mW) DS02DS03-C

9QW @3mm
(T: 185mW)

Length ↑
⇒

9QW @2mm
(150mW) DS02DS03-B

7QW @2mm 
Doping Opt
(T: 170mW)

Doping Opt
⇒

7QW @2mm
(130mW) DS01DS03-A

9QW @3mm
Doping Opt
(T: 290mW)

Length ↑
⇒

9QW @2mm
Doping Opt
(T: 200mW)

DS03-D

9QW @2mm
Doping Opt
(T: 200mW)

Doping Opt
⇒

9QW @2mm
(150mW) DS02DS03-C

9QW @3mm
(T: 185mW)

Length ↑
⇒

9QW @2mm
(150mW) DS02DS03-B

7QW @2mm 
Doping Opt
(T: 170mW)

Doping Opt
⇒

7QW @2mm
(130mW) DS01DS03-A

 
 

Figure 2-7: Optical power vs device length with various optimization scheme 
 
2.3.7 Four wafer runs were carried out for the designs DS03-A to D. The measured peak 

optical powers for DS03-A and C are shown in Fig. 2-8. A peak optical power of 220 
mW is achieved for a current injection of 1.4 A. As explained in Table 2-3, when 
compared to DS02, the result of DS03-A demonstrates that the doping optimization 
design roughly compensates for 2 fewer quantum wells in DS03-A. In addition, it can 
also be observed that a lower realized strain for DS03-C sample leads to a lower overall 
optical gain. 
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Figure 2-8: Measured peak optical power performance of DS01, DS02, 
DS03-A and DS03-C 

 
Table 2-3: Comparison and analysis of SLED chip designs DS02 and DS03 

 

9QW, 2mm,
Doping Optimization

7QW, 2mm,
Doping Optimization

9QW, 2mm

SLED Design Parameters
(QW #, Length)

Doping roughly compensates for 2 fewer 
QW221mW at 1.4A1.1%DS03-A

Smaller 9QW-strain lowers overall optical 
gain215mW at 1.4A0.8%DS03-C

Reference220mW at 1.4A1.0%DS02

ObservationsMeasured LIMeasured 
Growth StrainID

9QW, 2mm,
Doping Optimization

7QW, 2mm,
Doping Optimization

9QW, 2mm

SLED Design Parameters
(QW #, Length)

Doping roughly compensates for 2 fewer 
QW221mW at 1.4A1.1%DS03-A

Smaller 9QW-strain lowers overall optical 
gain215mW at 1.4A0.8%DS03-C

Reference220mW at 1.4A1.0%DS02

ObservationsMeasured LIMeasured 
Growth StrainID

 
 
2.3.8 The power efficiency (PE) attained in DS03-A is 10% at 1A current drive, as shown in 

Fig. 2-9. The PE peaks at 14% at 400 mA drive and subsequently drops to 7% at 1.4 A 
current. Further increase of PE requires a longer device length of 3mm to get higher 
optical power at higher current with minimal increase in the operating voltage, as 
described in Table 2-4. 
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Figure 2-9: Power efficiency of SLED chip of design DS03-A 
 

Table 2-4: Comparison of SLED chip designs for higher PE 
 

 
2.3.9 Four wafer runs each have been carried for designs DS03-A’ (7QW, 3 mm, doping 

optimization) and DS03-D (9QW, 3 mm, doping optimization), as tabulated in Table 2-
5. As shown in Fig. 2-10, we have been unsuccessful in getting good SLED chips of 
3mm in length of DS03-A’ and DS03-D; the optical power measured at 1 A is at most 
~120 mW, well below the projected optical power values. Even with much process 
tuning for samples of DS03-A’-4 and DS03-D-4, the measured CW optical power is 
~120 mW. We believe that this is due to the high built-in strain in the SLED chip, 
which affected the crystal quality and hence the optical performance. 
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Table 2-5: Wafer runs for 3mm SLED devices 

 

 
Figure 2-10: Optical power vs current injection of DS03-A’ and DS03-D SLED samples 
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2.3.10 The optical far-field angles obtained for SLED chip of DS03-A design is 38º vertical 
versus 32º horizontal, which is near circular. Since this SLED chip can be matched with 
DP04 aspherical lens in the TOSA module to realize a beam divergence of <2 mrad 
(see section 3.4), this planned DS04 stage to further fine-tune the optical far-field of the 
SLED chip is skipped.   
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power efficiency has also been doubled from 5% to 10%. A near-circular optical far-
field mode profile has also been obtained, which is expected to allow for good 
collimation to realize low beam divergence at the TOSA level.  
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3. Package Design and Assembly Development 
 
3.1 Organization of Design Stages 
3.1.1 The SLED package design and assembly development is divided into four stages, as 

shown in Fig. 3-1:  
 

DP01 (TO-header sub-assembly development): 
This development stage targets the assembly and integration of chip-on-submount 
(COS) and TEC unit or CuW block onto the TO-header. The completed sub-
assembly can be used as a partially completed package for CW and pulse testing 
and also as starting material for DP02 capping development. 

 
DP02 (TO-header capping development): 

The main focus of this stage is to develop the hermetic sealed TO capping process. 
The capped TO-can will be subsequently be used for TOSA assembly.   

 
DP03 (TOSA assembly development): 

In this stage, the capped TO can is integrated with collimating lens to form the 
TOSA module. The key parameter of beam divergence is targeted to be <10 mrad.   

 
DP04 (TOSA assembly optimization): 

Optimization of the TOSA process, including the selection of longer focal length 
lens or spatial filter, is to be carried out to achieve final target beam divergence of 
<2 mrad.  
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Figure 3-1: Package design and assembly development organization chart 
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3.2 TO-Header Sub-Assembly Development (DP01) 
3.2.1 Design 
3.2.1.1 The key consideration in the design of TO-can header, is its size, such that it could 

accommodate the SLED chip of at least 3mm in device length on the submount, the 
TEC unit, as well as allow for the vertical heatsink for COS-TEC mounting. At least 7 
leads are needed to cater for the temperature sensing thermistor (×2), SLED cathode 
(×1), SLED anode (×1) and TEC unit (×2), together with one spare pin. The nearest 
available industrial form-factor standard for the can outline is TO-8 with diameter of 
>12 mm. This platform is also able to serve as the base-module for the collimation 
optical sub-assembly to be built upon. Figure 3-2 shows the configuration of the 
selected TO-8 header with vertical heatsink and 7 leads. 

 

 
Figure 3-2: TO-8 header with pin assignment  

 
3.2.2 Process Development and Results 
3.2.2.1 Figure 3-3 shows the process flow for fabrication of the TO-header sub-assembly. The 

process comprises integrating COS, TEC and the TO-header, and wire bonding from 
the respective pads to the leads of the header. A TO jig holder of Fig. 3-4 has been 
designed and fabricated to hold the TO header during this TO-header assembly process. 
The mounting of the CoS on TEC and then the COS-TEC on the TO header is carried 
out using a die-attach machine. The tolerance of the COS-TEC-header mounting 
process is +/-0.02 mm. The wire bonding of electrodes to the leads of the header is 
performed with 1 mil gold wires. 
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Figure 3-3: TO-header sub-assembly process flow 
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Figure 3-4: Holding jig for integration of CoS-TEC to heatsink on header 

 
3.2.2.2 The solder scheme used in the integration of COS-TEC-header has to be carefully 

selected in consideration of the maximum temperature rating of the COS and TEC. The 
solder used should have a maximum temperature smaller than maximum rating of 220 
°C of the TEC and higher than the storage temperature requirement of 85 °C. The 
temperature range within 130 to 200 °C is selected. In addition, the solder also need to 
have a thermal expansion coefficient that is close to the heatsink and SLED chip to 
avoid exerting undue stress on the chip. Table 3-1 shows the properties of the solder 
used in the integration process. The solders selected for the interface between different 
parts are shown in the schematic diagram of Figure 3-5. 

 
Table 3-1: Property of solders selected 

 

 
 
 
 
 
 
 
 

Part Material Melting temp. 
(degC)

CTE 
(x10-6/degC)

Solder 80Au20Sn 280 16
Solder 97ln3Ag 146 22
Solder 58Bi42Sn 138 14
SLED InP - 4.5
Submount AlN - 4.5
TEC Ceramic - 6.7
Heatsink OFHC - 9.4
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Figure 3-5: (a) Solder selected for integration of CoS-TEC-heatsink on header, 
(b) Assembly cross section of COS-TEC-heatsink with wire bondings 

 
3.2.2.3 In order to check the strength of the bonding between the various interfaces, 

mechanical stress test is performed on the sub-assembly header: 
i) Die shear: Between SLED chip and submount 
ii) Ball shear: Between wire ball and submount  
iii) Wire pull:  Between bonding wire and the header lead 
iv) COS shear: Between COS and TEC 
v) TEC shear: Between TEC and heatsink of header 

 
3.2.2.4 The mechanical stress performance between the layers indicated from i) to v) is 

tabulated in Table 3-2. Their measured performance are well within requirement, 
except for the low CoS shear force between the COS and TEC. This is due to 
application of solder preform on the top surface of TEC, which does not have the 
required adhesion strength to the TEC surface. A TEC with pretinned solder on its top 
surface will be used to increase this bonding force. However, due to the delay in 
delivery of the TEC with pretinned solder, this COS shear test is not repeated. The TEC 
unit is later changed to CuW block as the thermal interface between the COS and 
heatsink of the TO-header. 

 
Table 3-2: Mechanical stress test 

 
3.2.2.5 Figure 3-6a illustrates the cracked die after going through the die shear test from the 

submount. Bonding between the die and submount is so strong that the SLED chip 
cracked with the solder still attached to the submount. Figure 3.6b shows the top 
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surface of TEC after COS shear. As solder perform is used, the bonding force is not 
strong enough and the solder is sheared off 

 

    (a)      (b) 
 

Figure 3-6: (a) Die shear from CoS, and (b) CoS sheared from TEC 
 

3.2.2.6 Figure 3-7 shows the fully integrated COS-TEC-Header with wire bonding to the 
specified leads. The SLED chip used in the process development is selected from DS01 
chip. The L-I curve of the SLED chip mounted on the TO-header is shown in Figure 3-
8. Thermal roll-over at 80mW output at ~600 mA is due to over-temperature of TEC 
under CW operation of SLED. 

 
Figure 3-7: Integrated CoS-TEC-header with wire bonding 

 
 
 
 
 
 
 
 
 
 
 
 



Doc. No. 418-0041-005-07-006 

Page 21 of 57 

DenseLight
Semiconductors
DenseLight
Semiconductors
DenseLight
Semiconductors

 

Figure 3-8: CW L-I curve of integrated CoS-TEC-header 
 
 
3.3 TO-Header Capping Development (DP02) 
3.3.1 Design 
3.3.1.1 The TO canning process is completed with the provision of a hermetically sealed inert 

environment for the SLED chip on TO-header through welding of a TO cap to the TO 
header, as illustrated in Fig. 3-9. 

 

Figure 3-9: Designed TO-8 header with cap 
 
3.3.1.2 The TO cap used in this project has a flat quartz window to allow the optical light to 

emerge from the TO can. Here, the diameter of the flat window and the cap height are 
carefully determined so that the diverging light from the SLED chip is not blocked by 
the metal part of the cap. In addition, the quartz window is also anti-reflection coated to 
minimize reflection back into the SLED chip, which would be detrimental to its 
operation. 
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3.3.2 Process Development and Results 
3.3.2.1 Figure 3-10 shows the developed process flow of TO-header capping. The capping 

process comprises firstly outgassing of the component to obtain low moisture and 
oxygen content before electrical welding of the cap to achieve hermetic sealing. Leak 
test and temperature cycling are carried out to check that this process fulfills the 
required criteria. 

 

 
Figure 3-10: Developed TO capping process flow 

 
3.3.2.2 Electrical welding is carried out by first placing the TO can into the electrode and then 

the TO-header sub-assembly into the TO cap. The welding electrode is designed with 
an accuracy of +/-0.001” ~ 0.002” (+/-0.025 to 0.05 mm) in holding the parts together 
during the process. Figure 3-11 illustrates the projection welder chamber and TO-
header sub-assembly in the electrode during the capping process. 
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   (a)             (b) 
 

Figure 3-11: (a) Projection welder in environment chamber and 
(b) TO header sub-assembly loaded into TO cap in electrode 

 
3.3.2.3 In order to check quality of the capping process, leak test, residual gas analysis and 

temperature cycling have been performed. In the leak test, 10 units TO cans have been 
bombarded with helium at 60PSI for two hours. A leak rate of <10-8 cc/sec has been 
detected, demonstrating that the process is well controlled as per Telcordia 
requirement. 

 
3.3.2.4 Residual gas analysis has also been carried out to check the gas content in the TO can. 

The test was performed with reference to ORS SOP MEL-1053 based on Commercial 
Practice for Internal Vapor Analysis and the test outcome meets Telcordia requirement 
of <5000 ppm of moisture. Table 3.3 shows the residual gas content in the TO can after 
the capping process. The oxygen and moisture levels are within the requirement.  

 
Table 3-3: Test report of interval vapor analysis of capped TO cans 

 

Note: 
Unknown* : NIST database best identified unknown as Styrene, C8H8 
ND  : None detected 
1% : 10,000ppm 
Pressure : Inlet chamber pressure 

 

Sample ID 1 2 3 Unit
Pressure 94.6 94 93.6 Torr
Nitrogen 99.6 99.6 99.5 %
Oxygen 2170 2049 2345 ppm
Argon 184 171 184 ppm
CO2 <100 <100 <100 ppm
Moisture 742 978 1897 ppm
Hydrogen 489 272 602 ppm
Helium ND ND ND ppm
Fluoro-Carbons ND ND ND ppm
Unknown* ND 194 ND ppm
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3.3.2.5 In addition, the completed TO-cap units were subjected to temperature cycling for 10 
cycles from –40 to +85 °C. The change of optical power is measured to be <+/-5% after 
the temperature cycling process, as shown in Figure 3-12. 
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Figure 3-12: Power change after 10 cycles of temperature cycling from -40 to +85 °C 

for TO capped unit 
 
3.3.2.6 Besides the above tests, assessment of the mechanical strength between the TO-header 

and cap is also carried out by applying a clamping force to the TO can. Figure 3-13 
shows the TO can before and after the clamping test. It can be seen that the material of 
TO cap is torn off while the welding joint is still intact. This proves that mechanical 
strength of the welding joint is stronger than that of the material of the TO cap (50 Ni-
Fe). 

    (a)          (b) 
 

Figure 3-13: TO-cap (a) Before clamping test, and (b) After clamping test  

 
3.3.2.7 The L-I curve of the SLED in the TO capped unit is shown in Figure 3-14. It is noted 

that the measured curve matches very closely to that of the SLED CoS, demonstrating 
that almost all the light emitted by the SLED chip emerges from the TO can and there 
is minimal light blockage by the cap. The roll-over at 80 mW output is due to over-
temperature of TEC under CW operation of SLED. 
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Figure 3-14: L-I test result of TO-8 capped unit, compared to that at CoS level 
 
 
3.4 TOSA Assembly Development (DP03) 
3.4.1 Design 
3.4.1.1 The diverging SLED light output from the packaged TO can is to be collimated with an 

aspherical lens to realize low beam divergence, forming a Transmitter Optical Sub-
Assembly (TOSA). 

 
3.4.1.2 A number of design considerations have to be looked into in order to realize low 2 

mrad divergence collimation. One of the key considerations is the design specifications 
for collimating lens (asphere, EFL, aperture, etc) and its assembly technique. Different 
lens from Alps, Anteryon, LightPath Tech and Jena have been studied for current 
TOSA implementation.  

 
3.4.1.3 For the TOSA assembly process, typical +/-10 µm order of magnitude tolerances of 

assembly parts and processes cannot support passive alignment to meet the project 
target requirement (not even for 10 mrad). Active alignment assembly process 
development is necessary, with DP03 (10 mrad) as first milestone to be achieved before 
progression to DP04 (2 mrad). 

 
3.4.1.4 The following variations are considered in the design of the optical lens and assembly 

process for the TOSA: 
a) Tolerances of dimensions of all mechanical parts and optics 
b) Tolerances of SLED chip far-field optical mode (due to wafer fabrication process 

tolerances) 
c) Tolerances of sub-assemblies (e.g. placement of chip with respect to the header 

datum) 
d) Tolerances of optics and their mounting alignment 
e) Tolerances of active alignment of TOSA (6-axis sub-micron precision tool to be 

employed) and maintenance of alignment precision during TOSA assembly 
process 
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f) Operating ambient/case temperature variations (impairment to optical alignment) 
g) Operational vibrations/shock (design-in reliability concept) 
 

3.4.1.5 Figure 3-15 shows the simulation results of divergence angle with reference to z-axis 
offset for lenses of different focal lengths. By increasing the focal length, the 
divergence angle is less sensitive to the z-axis offset. In DP03, an Alps lens 
FLAN1Z101 with focal length of 1.81 mm and numerical aperture (NA) of 0.3 has 
been selected to realize <10 mrad of divergence. The proposed mounting of the lens on 
the cap is depicted in Figure 3-16. The simulated distribution of axial z offset of the 
lens is shown in Figure 3.17a with the tolerance of each component tabulated in Figure 
3.17b. 

  

Figure 3-15: Simulation of divergence angle versus axial z offset for lenses of different focal 
lengths 

 

 
Figure 3-16: DP03 Alps aspherical lens with active alignment and mounted directly on TO-

window cap. 
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Figure 3-17: (a) Simulated distribution of axial z offset outcome of DP03 lens using 
Monte Carlo Analysis, and (b) Axial tolerance used in simulation 

 
3.4.2 Process Development and Results 
3.4.2.1 The assembly and integration of the DP03 lens with the TO-8 can is performed using a 

6 axis translation stage, as illustrated in Fig. 3-18. The beam divergence is monitored 
live during assembly with a Goniometric radiometer. A typical beam divergence plot of 
SLED on TO-header sub-assembly with DP03 lens from Alps is shown in Figure 3-19. 
A divergence angle of ~10 mrad has been achieved. 

 
Figure 3.18: Beam divergence setup using Photon Inc Goniometric Radiometer 
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Figure 3-19: Beam divergence of SLED on TO-header sub-assembly after collimation with 

DP03 lens (measured with Goniometric Radiometer) 
 
 
3.4 TOSA Assembly Optimization (DP04) 
3.4.1 Design 
3.4.1.1 To improve the collimation of 10 mrad in DP03 to the target value of <2 mrad in DP04, 

an aspherial lens of larger focal length has to be used. From the simulation results in 
Fig. 3-20a, it is clear that a lens with focal length of >6 mm is required to achieve a 
divergence angle of <2 mrad. 

  
3.4.1.2 In DP04, an Anteryon lens AC355 with focal length of 6.25 mm and numerical aperture 

(NA) of 0.3 has been selected to achieve <2 mrad of divergence angle. The proposed 
scheme of mounting of the lens on the cap is depicted in Fig. 3-20b. The simulated 
distribution of axial z offset of the lens is shown in Figure 3-21. 

 

   (a)              (b) 
Figure 3-20: (a) Simulation of divergence angle versus axial z offset for different focal lengths, 

(b) DP04 Anteryon lens with active alignment and mounted at a distance from the cap 
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Figure 3-21: Simulated distribution of axial z offset of DP04 lens using Monte Carlo Analysis  

 
3.4.2 Process Development and Results 
3.4.2.1 The setup of the assembly of the TOSA module is illustrated in Figure 3-22. The TOSA 

is mounted on a 6-axis translation stage, and active alignment is performed by 
projecting the light from the TOSA through mirrors to the beam scan detector located at 
1.75 m away from the light source. The lens is affixed onto the TO can with epoxy 
once the target beam profile is achieved. A completed TOSA module is shown in Fig. 
3-23. 

 
 

Figure 3-22: TOSA assembly stage with epoxy UV curing lamp 
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Figure 3-23: Completed TOSA with DP04 lens 
 
3.4.2.2 Figure 3-24 shows the optical far-field mode profile of the SLED TOSA measured by 

the beam scan detector. A beam divergence of around 1 mrad has been achieved, as 
also confirmed by the following computations: 

 
Distance between SLED & detector, L = 1.75m 
Measured beam diameter at L, D = 1.5mm 
SLED TOSA FOV   = 2·tan-1(D/(2L)) 

= 2·tan-1(1.5×10-3/(2×1.75)) 
= 0.9mrad 

 

    (a)           (b) 
  

Figure 3-24: TOSA mode profile (measured by beam scan detector) 
(a) Plot of far-field CW: IF = 350 mA, and (b) 3D far-field plot of divergence 
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3.4.2.3 The electrical and optical characteristics of the TOSA have been evaluated. Figure 3-
25a and b shows the CW optical power versus forward current and forward voltage 
versus forward current respectively. CW optical power output of 40 mW at operating 
current of 350 mA is achieved. 

 
3.4.2.4 The TOSA peak power test is carried out with pulse width of 2 µs, duty ratio of 0.1% 

and Keithley pulsed electronics driver, and the measured result is shown in Figure 3-
25c. A TOSA optical peak power of 160 mW has been achieved. When compared to 
the TO can emission power, there is an excess optical loss of ~25% after TOSA 
assembly. This is likely due to some blockage of light by the collimating lens mount to 
the TO-8 can. 

 
3.4.2.5 Figure 3.26 shows the optical spectrum of the SLED TOSA obtained from an optical 

spectrum analyzer. The measured center wavelength of the broadband emission is 
~1550 nm. 

           (a)            (b) 

          (c) 
 

Figure 3.25: (a) CW power vs. forward current, (b) Forward voltage vs. forward current, and 
(c) Pulsed peak power vs. forward current with pulse width of 10ns, duty ratio of 0.1% 
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Figure 3.26: Optical spectrum of SLED TOSA 

 
 
3.5 Summary 
3.5.1 The SLED chip has been successfully packaged into a compact 7-pin TO-8 platform 

TOSA with built-in collimating aspherical lens. Good matching of collimation optics 
with SLED optical mode profile, together with packaging mechanical design and 
assembly process optimization, has enabled the achievement of a very low beam 
divergence of 1mrad. 
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4. Device Test Development 
 
4.1 Organization of Design Stages 
4.1.1 The SLED device test development involves design of divergence test methodology 

and test setup, and design of electronic circuit to drive the TOSA for fast pulse testing 
with high drive current. It is organized into the following stages: 

 
DTO01 (TOSA test development):  

In this first stage, the test methodology for beam divergence measurement will be 
established, together with building up a test setup for beam divergence 
measurement capability down to <10 mrad. 

 
DTO02 (TOSA test refinement): 

Subsequently, improvement on the beam divergence test setup will be performed to 
enable measurement down to <2 mrad. 

 
DTH01 (Pulse test development): 

Here, the electronic pulse drive test circuit is designed and fabricated to match with 
the SLED electrical characteristics. A fast pulse measurement test setup is to be 
built up with rise and fall times measurement capability of <5 ns. 

 
DTH02 (Pulse test refinement): 

Refinement on electronic pulse test circuit design is carried out to allow for direct 
mounting of the SLED TOSA onto test evaluation board so as to realize rise and 
fall times of <1 ns. 

 
 
4.2 TOSA Test Development (DTO01) 
4.2.1 Figure 4-1 shows the beam divergence test platform set up based on the goniometric 

radiometer. The TO-header sub-assembly integrated with DP03 lens (short focal 
length) is mounted onto a 6-axis translation stage to align its output beam into the 
goniometric radiometer detector. The divergence angle can be obtained directly through 
the measured 2-D plot. The measurable beam divergence is around 10 mrad, as shown 
in Fig. 4-2 
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Figure 4-1: Beam divergence setup using Photon Inc Goniometric Radiometer 
 

 
Figure 4-2: Beam divergence of SLED on TO-header sub-assembly 

after collimation with DP03 lens  
  

 
4.3 TOSA Test Refinement (DTO02) 
4.3.1 In order to measure the optical beam divergence down to sub-mrad resolution, a 

Photon-Inc. beam scan detector is used to characterize the SLED TOSA light emission 
at a distance L from the emitter (Fig. 4-3a and b). The 2-D and 3D mode profiles of the 
TOSA are generated by the instrumentation, and the optical beam divergence 
subsequently determined as follows: 

 
Distance between SLED TOSA and detector, L = 1.75m 
Measured beam diameter at L, D = 1.4mm 
SLED TOSA FOV  = 2·tan-1(D/(2L)) 
                                = 2·tan-1(1.46×10-3/(2×1.75)) 
                                = 0.8mrad 
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(a) 

(b) 
 

Figure 4-3: (a) Schematic diagram and (b) experimental setup for sub-mrad resolution beam 
divergence measurement 

 
4.3.2 Figure 4-4 shows the optical mode profile of the SLED TOSA measured by the beam 

scan detector in the setup of Fig. 4-3. The variation of measured FWHM with scan 
detector displacement is plotted in Fig. 4-5. The field of view (FOV) is also 
independently determined from the gradient of the fitted line: 
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Gradient of fitted line = 2·tan(FOV/2) 
For horizontal FF, 

Gradient = 0.08/130 = 6.2×10-4 
FOV       = 0.6mrad 

For vertical FF, 
Gradient = 0.15/130 = 1.15×10-3 
FOV       = 1.1mrad 

 
             (a)      (b) 
 

Figure 4-4: TOSA mode profile measured by beam scan detector 
(a) plot of far-field CW: IF=350 mA, and (b) 3D far-field plot of beam profile 

 
 

 
Figure 4-5: Variation of SLED TOSA beam FWHM with scan detector displacement 

 
4.3.3 From the above described measurement setup and computation methodology, it has 

been demonstrated that the optical beam divergence test setup is capable to 
characterizing the beam divergence down to at least 1 mrad. 
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4.4 Pulse Test Development (DTH01) 
4.4.1 The Directed Energy Inc. IXLD02 pulse driver is first used to drive the SLED TO-8 

platform for pulse test characterization. The IXLD02 IC is an ultra high-speed 
differential laser diode driver capable of drive current upto 2 A. In addition, its 
maximum operating frequency of 17 MHz, pulse width of <1.5 ns and pulse rise and 
fall times of 600 ps meets the requirements of the pulse test setup. Figure 4-6 shows the 
schematic test setup based on the Directed Energy IXLD02 IC. 

 

 
Figure 4-6: Schematic of pulse test setup of SLED TO-8 

 

   (a)       (b) 
 

Figure 4-7: (a) TO can mounted on pulse drive board and facing PD, 
(b) Measurement equipment for pulse test characterization 

 
4.4.2 Figure 4-7 illustrates the TO can mounted on the pulse driver board and equipment 

setup for the pulse test characterization. Output light from the SLED is collected into 
the PD, and the received electrical signal is analyzed using the Tektronix pulse test 
equipment. Details of the test setup are explained in section 4.5. 

 
4.4.3 Different types of PIN PD have been selected to characterize the fast rise and fall times 

of the received signal so that the optical pulse signal could be captured accurately. 
Table 4-1 tabulated the specifications from 1) New Focus 1414, 2) Mitsubishi GNOK-
PD708C8 and 3) Perkin Elmer C30618 PDs. The signal detected from each PD is 
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shown in Figure 4-8. The New Focus PD is able to capture modulation rise time of <1 
ns and hence is selected for the SLED TOSA pulse test characterization. 

 
Table 4-1: Different PDs used to characterize rise and fall times of received signals 

   

       (a)         (b)               (c) 
 

Figure 4-8: SLED light received using (a) New Focus 1414 PD, (b) Mitsubishi PD708C PD, 
(c) Perkin Elmer C30618 PD 

 
4.4.4 Figure 4-9 shows the test setup for average optical power measurement using a 

calibrated integrating sphere 2500INT-2-IGAC and Keithley Model 2500 Dual 
Photodiode Meter. The computed peak power from the measured average optical 
power, pulse width and repetition rate is shown in Figure 4-10, whereby the measured 
average optical power scales linearly with the pulse width and repetition rate. A peak 
optical power of close to 220 mW at ~1.5 A pulsed current drive is achieved using 
DS02 SLED chip. 
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PD Diameter 25 um 80um 300um
PD 3dB BW 25GHz 3GHz 0.75GHz
PD rise time <0.02ns <1ns <1ns
PD dark current N/A <2nA <5nA
Responsivity 0.6A/W 0.8A/W 0.7A/W
Modulation rise 
time

~0.6ns ~1.5ns ~2.3ns

Modulation fall 
time

~0.9ns ~1.7ns ~2.3ns

Rise time: ~2.3nsRise time: ~2.3nsRise time: ~0.6nsRise time: ~0.6ns
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Fall time: ~0.9nsFall time: ~0.9ns
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Figure 4-9: Integrating sphere 2500INT-2-IGAC and Keithley Model 2500 Dual Photodiode 
Meter for average power measurement 

         (a)                (b) 
  

Figure 4-10: (a) Computed peak power vs pulse repetition rate, 
(b) Measured average power vs pulse repetition rate 

 
 
4.5 Pulse Test Refinement (DTH02) 
4.5.1 In order to improve the test functionality and mounting of SLED TOSA, an evaluation 

board (Eval-board) is designed and fabricated based on the key features of the IXLD02 
board used in DTH01.  

 
4.5.2 The Eval-board is complete with mounting for the SLED TOSA and essential drive 

electronics to support a comprehensive range of testing with minimal external 
electronics instrumentation. Figure 4-11 shows an example of how the SLED can be 
clamped onto the evaluation board for thermal dissipation, together with short leads for 
low-inductance high-speed (<1 ns rise/ time) pulse drive of the SLED light output over 
various ranges of power level, pulse width and pulse repetition rate. A temperature 
controller is also included in the Eval-board to operate the internal TEC (if available) of 
the SLED TOSA and thereby setting the chip temperature of the SLED device 
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   (a)       (b) 
 

Figure 4-11: a) Bottom side, and b) Top side of Eval board 
 
4.5.3 The mechanical layout of the Eval-board is shown in Figure 4-12a and b. Key features 

of the Eval-board include: 
i) Use simple lab power supplies (+5 V, +7 V) 
ii) Mounting clamp for SLED TOSA unit 
iii) Preset for 0 to 2 A variable pulse current 
iv) Preset for 10 ns to 300 ns pulse width 
v) User defined pulse repetition rate/pattern via external trigger input (CMOS/TTL-

logic) 
vi) Preset chip operating temperature from 0 to 40 °C 

 

 
Figure 4-12a: Top-side mechanical layout of evaluation board 

 
 

TOSATOSA

D C

AB

D C

AB



Doc. No. 418-0041-005-07-006 

Page 41 of 57 

DenseLight
Semiconductors
DenseLight
Semiconductors
DenseLight
Semiconductors

 
Figure 4-12b: Bottom-side mechanical layout of evaluation board 

 
4.5.4 Table 4-2 shows the pin assignment and functions of connectors of the Eval-board. The 

8-pin header provides power supply to the TEC and LD driver. The external trigger 
input is via SMA connector (J2). All monitoring signals for various component 
functions, for example, TEC temperature or LD anode and cathode voltages, can be 
accessed through test point connectors TP1 to TP8. 

 
4.5.5 The received electrical signal from the pulsed SLED TOSA is measured by guiding the 

collimated light output from the SLED into the New Focus 1414 high-speed 
photodetector using a fiber connector and monitoring the output with an oscilloscope 
through matched high-speed cable, as shown in Fig 4-13. A typical trace of pulse is 
shown in Fig. 4-14 with the following key parameters: 
i) Rise time and fall time of <1 ns. 
ii) Pulse width = 10 ns 
iii) Pulse repetition rate = 100 kHz 
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Table 4-2: Pin assignment and function of evaluation board 
 

Label Connector Type Pin No. Description 
1 Power supply ground 
2 +5V D.C. 
3 Power supply ground 
4 +5V D.C. 
5 Power supply ground 
6 +7V D.C. 
7 NC 

J1 8-pin Header 

8 NC 
J2 SMA    External Trigger Input (CMOS/TTL compatible) 

TP1 Test Point Connector To monitor TEC temperature 
TP2 Test Point Connector GND 
TP3 Test Point Connector GND 
TP4 Test Point Connector To monitor light source Anode voltage 
TP5 Test Point Connector To monitor light source Cathode voltage 

TP6 Test Point Connector 

To monitor voltage across VR1 that control current 
IIBI, flowing into IBI pin of IXLD02 high-speed LD 
driver IC that is used as baseline current with respect 
to IIPW current to compensate for internal delays. 

TP7 Test Point Connector 
To monitor voltage across VR2 that control current 
IIOP, flowing into IOP pin of IXLD02 high-speed LD 
driver IC that is used to tune LD current 

TP8 Test Point Connector 

To monitor voltage across VR3 that control current 
IIPW, flowing into IPW pin of IXLD02 high-speed 
LD driver IC that is used to tune LD current pulse 
width 

 
 

Tektronix
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Thorlabs
F810FC-1550
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high-speed

photodetector

SMF
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Figure 4-13: Pulsed optical signal measurement setup 
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         (a)      (b) 
 

Figure 4-14: Scope trace of (a) Single pulse, and (b) Pulse train, with pulse width = 10 ns and 
repetition rate = 100 kHz 

 
4.5.6 The pulse width of the SLED current drive can be tuned via variable resistors VR1 and 

VR3. VR1 controls the current IIBI, flowing into IBI pin of IXLD02 high-speed LD 
driver IC that is used as a baseline current with respect to IIPW current to compensate for 
internal delays. Resistor VR3 controls the current IIPW, flowing into IPW pin of 
IXLD02 high-speed LD driver IC that is used to tune the SLED current pulse width. 
Turning the VR1 and VR3 in clockwise direction will reduce the IIBI and IIPW, while 
anti-clockwise rotation will increase both values. The voltage across VR1 and VR3 can 
be monitored via TP6 and TP8 respectively. The value of IIBI should be higher than IIBI. 
If IIPW=IIBI, the pulse width is 0. As IIPW approaches IIBI but less than IIBI, the pulse width 
becomes smaller. Figure 4-15 illustrates the relationship of current pulse width tPW 
versus IIPW with respect to IIBI. 

 
Figure 4-15:  Current pulse width versus IPW current (Abstracted from page 5 of IXLD02 

Ultra high-speed laser diode driver IC specification from Directed Energy Inc.) 
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4.5.7 The output current that drive the SLED can be tuned via variable resistor VR2 that 
controls current IIOP flowing into IOP pin of IXLD02 high-speed LD driver IC, and 
the voltage across VR2 can be monitored via TP7. The voltage across the SLED can be 
obtained from measurement of voltage difference between TP4 (TP3 as GND) and TP5 
(TP2 as GND) using an oscilloscope. 

 
4.5.8 The temperature of the TEC unit inside the TO-can, if available, can be tuned via 

variable resistor VR4. The voltage across VR4 is monitored via TP1. Figure 4-16 
shows the corresponding TEC temperature with TP1 voltage. The maximum driving 
current and voltage of the TEC is set at 1 A and 2 V respectively, with nominal setting 
at 25 °C. 

 
Figure 4-16: Dependence of TEC temperature with TP1 voltage 

  
 
4.6 Summary 
4.6.1 The measurement methodology and test setup for optical beam divergence of the SLED 

TOSA have been developed and refined to enable characterization down to at least 1 
mrad resolution. 

 
4.6.2 An evaluation board has also been developed with high speed and high current drive 

electronics to allow for improved test functionality and direct mounting of SLED 
TOSA onto the board. Fast rise and fall times of <1 ns of SLED drive pulses have been 
realized with the evaluation board. 

 
 
 

0.5 0.6 0.7 0.8 0.9 1.0
10

15

20

25

30

35

40

Recommended 
operating range

TE
C

 te
m

pe
ra

tu
re

 (0 C
)

TP1 (V)



Doc. No. 418-0041-005-07-006 

Page 45 of 57 

DenseLight
Semiconductors
DenseLight
Semiconductors
DenseLight
Semiconductors

5. Sample Unit Preparation and Test 
 
5.1 Configuration of Sample Units 
5.1.1 Ten units of SLED TOSA are prepared and packaged as samples. The SLED chip used 

is based on the DS03-A design (7QW structure of 2 mm length with doping 
optimization). As delivery of the selected microTEC unit from Marlow is very much 
delayed because of need for ITAR license grant, the TO-header sub-assembly is 
redesigned for uncooled operation, with the TEC unit replaced by a CuW block for heat 
dissipation. 

 
5.1.2 Out of the ten SLED TOSA samples, five units are mounted onto DenseLight designed 

evaluation board for ease of test verification. All the ten samples have been fully tested 
and characterized. 

 
 
5.2 Performance and Results 
5.2.1 CW Optical Power, Current Drive and Forward Voltage 
5.2.1.1 The TOSA samples are first characterized for their CW optical power versus current 

drive characteristics at 25 °C thermistor readout of SLED chip temperature (TSLED). 
Figure 5-1 shows the measured CW optical power with forward current and distribution 
of the optical power at 0.35 A for the 10 samples. A mean CW optical power of >42.5 
mW is obtained. 

     (a)       (b) 
 

Figure 5-1: (a) CW optical power vs. current injection, and 
(b) Distribution of CW optical power at 0.35 A 

 
5.2.1.2 The I-V characteristics of the TOSA samples are shown in Fig. 5-2. The mean 

operating voltage at 0.35 A drive current is 1.38 V. 
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   (a)                 (b) 
 

Figure 5-2: (a) Forward voltage vs. current injection, and 
(b) Distribution of forward voltage at 0.35 A 

 
5.2.2 Pulsed Optical Power and Current Drive 
5.2.2.1 The pulsed performance of the TOSA samples are characterized with the Keithley pulse 

driver, integrating sphere and dual photodiode meter. Measurement is carried out at 25 
°C TSLED, with pulse width of 2 µs and duty ratio of 0.1%. Figure 5-3 shows the 
measured pulsed optical power performance. The mean optical peak power obtained is 
170 mW at 1.6 A current drive. 

   (a)       (b) 
 

Figure 5-3: (a) Optical peak power vs. pulse current injection, and 
(b) Distribution of optical peak power at 1.6 A 
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5.2.3 Optical Spectrum 
5.2.3.1 The optical spectrum of the TOSA samples are measured with an optical spectrum 

analyzer under CW operation at 0.35 A current injection and TSLED of 25 ºC. As shown 
in Fig. 5-4, all samples have a mean center wavelength of 1545 nm and a 3dB optical 
bandwidth of 30 nm, demonstrating the targeted incoherent optical spectrum emission. 

 

        (a)       (b)  
 

Figure 5-4:  (a) Distribution of center wavelength at 0.35 A, and 
(b) Distribution of 3dB bandwidth at 0.35 A 

 
5.2.4 Beam Divergence 
5.2.4.1 The TOSA light source beam divergence is measured by scanning the 2D far-field 

beam profile at a distance of 1.75 m from the emission point. The measured beam 
diameter is then used to compute the beam divergence. Figure 5-5 shows that a beam 
divergence of ~0.9 mrad is obtained for all the ten TOSA samples when driven at 0.35 
A CW and 25 ºC. 

        (a)         (b) 
 
Figure 5-5:  (a) Measured far-field optical mode profile, and (b) Distribution of divergence angle 
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5.2.5 Pulse Characteristics 
5.2.5.1 The rise and fall times of the TOSA samples mounted on DenseLight DL-US551502G-

L01-Eval evaluation board are measured under operating condition of 10 ns pulse 
width, 0.1% duty ratio and 25 ºC TSLED. Figure 5-6 shows the distribution of the rise 
and fall times and average values of 1.0 ns and 1.6 ns are obtained respectively. Based 
on earlier results discussed in section 4.4, the measured values could be limited by non-
optimized tuning of the evaluation board onto which the TOSA samples are mounted. 

 

             (a)               (b)    
 

Figure 5-6: Distribution of (a) rise time and (b) fall time of TOSA 
mounted onto evaluation board 

 
5.2.5.2 The dependence of the measured optical peak power with respect to the pulse width and 

pulse repetition rate are shown in Fig. 5-7. As can be observed, the optical peak power 
is independent of pulse width and pulse repetition rate, and stays at 170 mW.  

         (a)       (b) 
 
Figure 5-7: Dependence of optical peak power with (a) pulse width, and (b) pulse repetition rate 
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5.2.6 Case Temperature Dependence 
5.2.6.1 The CW optical power of the TOSA samples is measured at different SLED case 

temperatures from 0 to 40 ºC to ascertain the dependence of optical power with 
temperature. Figure 5-8 shows the measured optical power with current injection at 
various temperatures measured on a heatsink near to the TOSA. It can be observed that 
all samples exhibit similar performance and the optical power at 0.35 A drops from 50 
mW at 0 ºC to ~30 mW at 40 ºC case temperature, giving an optical power sensitivity 
of –0.53 mW/ºC. 

         (a)       (b) 
 

Figure 5-8: (a) Optical power vs current injection at various case temperatures, and 
(b) Distribution of normalized power at 0.35 A and various case temperatures 

 
5.2.6.2 The optical peak power of the TOSA samples is similarly characterized over 0 to 40 ºC 

SLED case temperatures, with current pulse width of 2 µs and duty ratio of 0.1%. 
Figure 5-9 shows the measured results, whereby the optical peak power sensitivity at 
1.5 A drive to the case temperature is determined to be –2 mW/ºC. 

            (a)      (b) 
 

Figure 5-9: (a) Optical peak power vs pulse current injection at various case temperatures, and 
(b) Distribution of normalized peak power at 1.5 A and various case temperatures 
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5.2.6.3 The TOSA optical spectrum characteristics at different case temperatures have also 
been measured, and the results are shown in Fig. 5-10. The center wavelength increases 
from 1532.5 nm to 1555.0 nm when case temperature increases from 0 to 40 ºC, 
showing a temperature dependence of 0.56 nm/ºC. The 3dB optical bandwidth similarly 
increases from 26.3 nm to 33.8 nm for the 40 ºC temperature rise, or a sensitivity of 
0.19 nm/ºC. 

    (a)             (b) 
 

Figure 5-10: (a) Center wavelength vs case temperature, and 
(b) 3dB bandwidth vs case temperature at 0.35 A current drive 

 
 
5.3 Summary 
5.3.1 Ten units of SLED TOSA samples have been assembled and fully tested, with 5 of the 

TOSA units mounted onto the evaluation board. The measured performance of the 
samples meets all the requirements as defined in the specifications sheet in the 
Appendix, and performance variation among the different TOSA samples is small. This 
demonstrates the good repeatability and control of the production and assembly 
processes. 
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6. Extension to Other Applications 
 
6.1 Active Hyperspectral Imaging 
6.1.1 Background 
6.1.1.1 Electro-optical remote sensing involves acquisition of information about an object or 

scene without coming into physical contact with that object or scene. Recently, passive 
imaging has evolved beyond one panchromatic band (grey scale), or three visible color 
bands, to several tens to hundreds of spectral bands covering the visible spectrum, near-
infrared (NIR) and shortwave infrared (SWIR) bands. 

 
6.1.1.2 In general, hyperspectral imaging refers to taking data in many, often contiguous 

wavelength bands, while multispectral imaging uses just a few wavelength bands, 
which may be separated from each other. Essentially, these imaging techniques exploits 
the fact that materials comprising various objects in a scene reflect, scatter, absorb and 
emit electromagnetic radiation in ways characteristic of their molecular composition 
and macroscopic scale and shape. With the radiation arriving at the sensor measured at 
many wavelengths, over a sufficiently broad spectral band, the resulting spectral 
signature, or spectrum, can be used to identify the materials in a scene and discriminate 
among different classes of materials. 

 
6.1.1.3 Typically, spectral imaging systems operate at visible through near-infrared 

wavelengths by relying on solar illumination. For many applications, the dependence 
on the measurement conditions can complicate analysis, making it difficult to compare 
spectral data taken under different conditions. 

 
6.1.1.4 Actively illuminating the scene of interest offers a way to address the measurement 

condition dependencies while providing additional advantages. Active illumination 
enables a sensor to operate day or night, even under adverse weather conditions when 
solar illumination is greatly reduced. In addition, placing the illumination source on the 
sensor platform provides a constant angle between the source, target and sensor, 
eliminating illumination-angle variations that can complicate analysis and degrade 
performance. An active source also reduces shadowing, which reduces false-alarm 
rates. 

 
6.1.1.5 Active spectral imaging can be applied to the detection of various types of military 

targets, such as inert land mines and camouflage paints and fabrications, using a 
combination of spectral reflectance, fluorescence and polarization measurements. 

 
6.1.2 SWIR Band and Application of SLED Illumination 
6.1.2.1 It is known the water-vapor absorption lines in the SWIR can be exploited as sources of 

contrast to distinguish between natural and man-made objects. Man-made objects, 
particularly paints and plastics, tend to be hydrophobic; they are designed to repel water 
to prevent rust, corrosion and degradation. Natural materials tend to be hydrophilic; 
they retain water because they are either porous (in the case of rocks and soils) or living 
(in the case of vegetation). Consequently, natural objects like rocks and foliage 
typically absorb more radiation in the 1.4 µm and 1.9 µm water-vapor absorption lines 
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than do man-made objects. By taking a simple ratio of two broad SWIR spectral bands, 
one can achieve good anomaly-detection performance and distinguish man-made 
objects from natural objects. 

 
6.1.2.2 The reflected SWIR light from the scene can be imaged using InGaAs based cameras, 

and it is not detectable to the human eye, night vision goggles or silicon cameras. This 
hence offers the additional advantage of covertness from detection by the common 
imaging technologies. 

 
6.1.2.2 Based on similar InGaAsP/InP material system, the SLED chip, TO-can and TOSA 

compact platform design methodologies developed in this program could be extended 
to enable speckle-free SLEDs illuminators in the wavelength range of 1250 nm to 1650 
nm with high brightness and low divergence. A set of SLED TOSA units of selected 
wavelengths could be mounted in a carousel surrounding the camera imaging sensor to 
realize an active SWIR hyperspectral imaging system.  

 
 
6.2 Underwater Diver Communications 
6.2.1 Background 
6.2.1.1 With the increased diving activities for various underwater applications and 

engagements, reliable communications between all personnel involved with the dive 
operation is essential. This includes communications with the actual divers and also 
coordination with supervisory topside, life support and tender personnel. 

 
6.2.1.2 Scuba divers are trained to use hand signals to communicate with their buddies. They 

also use underwater writing boards, which allow for better communication. However, 
both of these techniques require light and will be much impaired when the water is 
murky, or during nighttime, or if the divers are too far apart to see one another clearly. 

 
6.2.1.3 Special acoustics underwater communication systems have been developed to allow 

divers to talk to each other underwater. A transducer is attached to the diver's facemask, 
which converts his or her voice into an ultrasound signal. A fellow diver has an 
ultrasound receiver, which accepts the signal and converts it back to a sound that the 
diver can hear, allowing for communication. The same system can be used for 
communication between the diver and a surface ship. However, this is generally of low 
bandwidth of around several tens of kb/s, which is still sufficient for speech 
communication between divers and a surface station or among divers. 

 
6.2.1.4 Free-space underwater optical transmission is a promising communications technology, 

which would greatly enhance the transmission bandwidth to around 10 ~ 100 Mb/s. 
Similar to acoustics systems, the wireless optical systems eliminate physical connection 
of tethers, allowing for speech communications between divers, as well as gathering of 
data from submerged instruments without human intervention and operation of 
unmanned or autonomous underwater vehicles. 
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6.2.2 Underwater Optical Propagation 
6.2.2.1 Optical propagation underwater is critically dependent on water optical properties, 

which vary with water depth, geographic location and time of day. Organic and 
inorganic particulates, as well as temporal variations such as turbulence, also affect the 
water properties. 

 
6.2.2.2 Intrinsic absorption of water, dissolved impurities and organic matter leads to loss of 

beam intensity underwater. Seawater is primarily H2O, and has dissolved salts, such as 
NaCl, MgCl2, Na2SO4, CaCl2 and KCl, that absorb light at specific wavelengths. Figure 
6-1 shows the absorption spectrum of pure seawater, and it is clear that pure seawater is 
absorptive, except for blue-green wavelength window of 400 to 530nm. 

 

 
Figure 6-1: Spectral absorption coefficient of pure seawater1 

 
6.2.2.3 Scattering, the redirection of incident photons into new directions, preventing forward 

on-axis transmission of photons, is an important phenomenon that affects underwater 
optical propagation. A consequence of scattering is that the optical beam will spread in 
diameter (increase in beam divergence) or loss light intensity (increase in attenuation). 

 
6.2.2.4 Figure 6-2 shows the attenuation of light in different water type environments. It can be 

seen that closer to land where river runoff introduces particulate and organic matter, 
scattering dominates attenuation coefficient. Correspondingly, the attenuation 
coefficient shifts from blue region of ~450 nm for ocean water to more greenish region 
~525 nm for coast water with worsening of water condition. This implies that the 
optimal optical wavelength to be used for underwater propagation depends on the water 
environment in which the optical transmission takes place. 

 
 
 

                                                 
1 J. R. Apel, Principles of Ocean Physic, pp. 509-584, International Geophysics Series, vol. 38, Academic Press, 
1996. 
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Figure 6-2: Spectral attenuation coefficient dependence on water type, turbidity2 

 
6.2.3 Compact Blue-Green Transmitter Source 
6.2.3.1 The key requirements of the transmitter source for underwater optical wireless link are: 

a) emission wavelength in low absorption loss region of water 
b) power scalability to W and above 
c) bandwidth of >1 MHz at high power operation 
d) efficient and compact optics collimation 

 
6.2.3.2 Selection of most suitable light source for transmitter is very important. GaN based 

light sources of LED and LD designed for DVD application emit in wavelength range 
of 400 to 500nm, which matches well with low loss absorption region of water. Blue-
green LEDs typically have an output power of around 70lumens or 1W and are 
fabricated as surface-emitting devices, resulting in poor beam divergence for long 
distance propagation. Figure 6-3 shows the typical blue-green LEDs and their beam 
profile. 

 
 
 
 
 
                                                 
2 "Remote Sensing Note" from Japan Association of Remote Sensing, 1966. 
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(a) 

(b) 
 

Figure 6-3: (a) Typical LED package and (b) their resultant beam emission profile 
(left picture is a conventional packaged LED, and right picture is Lumileds package) 

 
6.2.3.3 The best alternative light source for underwater optical propagation is the blue-green 

diode laser, which currently has reached output powers of >100mW. Emission 
wavelengths are clustered into bands of 406nm, 445nm and 473nm, and they can be 
modulated above 10MHz. Table 6-1 summarizes the specifications of blue-green LD 
from major suppliers of Nichia, Sharp and Sony. Package form factors are in TO-56 
cans shown in Fig. 6-4a, and typical lasing spectrum is shown in Fig. 6-4b. 

 
Table 6-1: Specifications of blue-green laser diodes3, 4, 5 

 
 

                                                 
3 http://www.sony.net/Products/SC-HP/pro/laser_diode/blu_ray.html 
4 http://sharp-world.com/corporate/news/070314.html 
5 http://www.nichia.com/product/laser-main.html 
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         (a)      (b) 
 

Figure 6-4: Blue-green laser diode: (a) TO-can package, (b) optical spectrum 
 
6.2.3.4 For underwater transmission application, the blue-green light source needs to have its 

optical profile tailored to low divergence for good collimation across range required. 
The developed TOSA compact platform in this project, which integrates an aspherical 
lens with the emitter chip in a TO-can, can also be extended to the blue-green light 
source. These blue-green TOSA modules could also be mounted in specific array 
configurations so as to scale up the transmitter optical power to the required level. 

 
 



Doc. No. 418-0041-005-07-006 

Page 57 of 57 

DenseLight
Semiconductors
DenseLight
Semiconductors
DenseLight
Semiconductors

7. Conclusions 
 
7.1 The indium phosphide-based SLED is an ideal light source for eye-safe target 

designation and imaging at 1550 nm spectral region. Its wide spectral width ensures a 
low coherency, which is critical for speckle free imaging. A high brightness and well-
collimated output beam allow for projection of the illumination across long distances. 

 
7.2 In this project, DenseLight Semiconductors designed, developed and demonstrated a 

high brightness SLED chip that exceeds 200 mW in peak optical power output and >20 
nm of spectral bandwidth at 1550 nm wavelength. This optical power level is the 
highest value ever achieved, exhibiting more than 2 times improvement over baseline 
SLED chips operating in the same wavelength range. 

 
7.3 The SLED chip is packaged into a compact 7-pin TO-8 platform with built-in 

collimating aspherical lens. The packaging design and process development of this 
transmitter optical sub-assembly (TOSA) achieved a very low beam divergence of 1 
mrad. 

 
7.4 In addition, the SLED chip and TOSA package are designed for both high optical 

power and high-speed pulse operation. An optical pulse stream of 10 ns pulse width, 
0.1% duty ratio and rise and fall times of 1 ns has been demonstrated, allowing for high 
speed pulsed illumination applications. 

 
7.5 In follow on efforts, the chip and packaging design concept implemented in this project 

could be extended to SLEDs emitting in other wavelengths, which would serve as key 
enabling optical components for hyperspectral imaging applications, as well as to blue-
green laser diodes as transmitter source for underwater communications among divers. 
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A. PRODUCT DESCRIPTION 
 
The DenseLight DL-US551502G-L01 series is a 1550nm SWIR-SLED (Short-Wavelength-Infrared 
Superluminescent LED) all-semiconductor high brightness and speckle-free light source 
packaged in a TO-8 TOSA, intended for applications in long range IR illumination. It is suitable 
for use in conjunction with IR focal plane arrays to realize a covert IR camera illuminator, 
since conventional silicon-based CCD imaging sensors and FLIR infrared cameras are not 
sensitive to illumination at this wavelength window.  
 
This DL-US551502G-L01 is integrated with optical collimating lens to provide excellent low 
divergence output light beam and is capable of being direct intensity modulated at high 
speed or to operate in quasi-CW modes.  
 
For responsive prototyping enquiries please email: info@denselight.com 
 
B. FEATURES 
 

• Optical peak power of >150mW  
• Center wavelength of 1550nm 
• 3dB spectral bandwidth of >20nm 
• Modulation rise time & fall time of 1ns (Typ) 
• Optical divergence <2mrad 
• 7-pin TO-8 TOSA (Transmitter Optical Sub-Assembly) 
• Operating temperature range 0 to 40°C 
 
 

C. PACKAGE 
 

Pin 
Assignment 

Description 

1 N/C 
2 N/C 
3 SLED Cathode (-) 
4 SLED Anode (+) 
5 SLED Cathode (-) 
6 Thermistor 
7 Thermistor 
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D.  ABSOLUTE MAXIMUM RATINGS 
 

Parameter Symbol Condition Min Max Unit 
Reverse voltage VR   2 V 
Forward voltage VF Iop  3.5 V 
Forward current IF Pulse1  1.8 A 
Case temperature Tc Iop 0 40 °C 
SLED temperature1 TSLED Iop 0 70 °C 
Storage temperature Tstg Unbiased -40 85 °C 
Storage humidity   5 85 %RH 
Electro static discharge (ESD) VESD Human body model  500 V 
Lead soldering temperature Stemp   260 °C 
Lead soldering time Stime   10 sec 

 
 
E. SPECIFICATIONS (TSLED

1 = 25 °C) 
 

Parameter Symbol Condition Min Typ Max Unit 
Forward voltage VF CW   3.0 V 

Pulse2   1.6 Forward current IF 
CW   0.35 

A 

Ppeak Pulse2 150   Optical power  
Po CW  35   

mW 

Modulation rise time and fall 
time 

tr & tf Pulse2  1 2 ns 

Center wavelength λc CW 1535 1550 1565 nm 
3dB Spectral width BFWHM CW 20   nm 
Divergence angle θdivergence CW   2 mrad 
Thermistor resistance Rtherm T = 25 °C 9.5 10 10.5 kΩ 

 
1 TSLED is monitored by internal thermistor with external pin out. 
2 Pulse condition: Pulse width, tpw=10ns, Duty ratio= 0.1%
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F. TYPICAL PERFORMANCE CHARACTERISTICS 
 
Operating condition: TSLED= 25 °C  
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A. PRODUCT DESCRIPTION 
The DenseLight DL-CS551502G-L01-Eval evaluation board is designed to offer a platform 
for customers to evaluate the DL- CS551502G-L01 Series of 7-pin TO-8 TOSA 1550nm 
SWIR light source, which is intended for long range IR illumination. The board is complete 
with the SWIR-SLED device and the essential drive electronics to support a comprehensive 
range of testing with minimal external electronics instrumentations. The evaluation unit 
shows an example of how the SWIR-SLED can be clamped on the evaluation board for 
thermal dissipation, with short leads for low-inductance high-speed pulse driving of the 
SLED light output over various range of power levels, pulse width and pulse repetition rate. 
It should be used in conjunction with the DL-CS551502G-L01data sheet, which contains 
detail specification. 
 
For quick responsive prototyping enquiries please email: info@denselight.com 
 
 
B. FEATURES 
• Use simple laboratory power supplies (+7V, +9V)  
• Mounting clamp for SWIR-SLED unit  
• Preset for 0-2A variable pulse current 
• Simplified test electronics interface (high speed current pulse generator on board)  
• Preset for 10ns to 300ns pulse width (<2ns rise/fall times) 
• User defined pulse repetition rate/pattern via external trigger input (CMOS/TTL-logic) 
• Built-in temperature controller with preset chip operating temperature from 0 to 40 °C 
 
 
C. RELATED DOCUMENT 
DenseLight DL-CS551502G-L01 7-pin SWIR-SLED-TOSA 1550nm IR light source 
 
 
D. EVALUATION BOARD LAYOUT 

 
 
Figure 1A. Evaluation board bottom-side where 
the TO-8 TOSA SWIR light source is mounted 

 
 
Figure 1B. Evaluation board top side where 
most of the electronic components are mounted
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E. PHYSICAL DIMENSIONS AND MECHANICAL SPECIFICATION 
 

 
 
 

 
 
 

Figure 2a. Top Side Mechanical Layout 
 
 
 
 
 
 

D C
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Figure 2b. Bottom Side Mechanical Layout* 
 
 

* a) Orientation to Top-Side: Reference board mounting holes identifiers A, B, C, D 
        b)  SWIR-SLED light emitting point is identified by “X” 
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F. PIN ASSIGMENT AND FUNCTION 
 
 
Label Connector Type Pin No. Description 

1 NC 
2 NC 
3 Power supply ground 
4 +7V D.C. 
5 Power supply ground 
6 +9V D.C. 
7 NC 

J1 8-pin Header 

8 NC 
J2 SMA    External Trigger Input (CMOS/TTL compatible) 
TP1 Test Point Connector - 
TP2 Test Point Connector GND 
TP3 Test Point Connector GND 
TP4 Test Point Connector To monitor light source Anode voltage 
TP5 Test Point Connector To monitor light source Cathode voltage 

TP6 Test Point Connector 

To monitor voltage across VR1 that control the current 
IIBI, flowing into IBI pin of IXLD02** high-speed LD 
driver IC that used as a baseline current with respect 
to IIPW current to compensate for internal delays 

TP7 Test Point Connector 
To monitor voltage across VR2 that control the current 
IIOP, flowing into IOP pin of IXLD02 high-speed LD 
driver IC that used to tune the LD current 

TP8 Test Point Connector 
To monitor voltage across VR3 that control the current 
IIPW, flowing into IPW pin of IXLD02 high-speed LD 
driver IC that used to tune the LD current pulse width 

 
 
Note: 
**Refer to data sheet of IXLD02 at www.directedenergy.com/poudcts/ics.htm 
 
 
Caution: Do not apply reverse voltage to pins as this might cause permanent damage 
to the evaluation board 
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G. MEASUREMENT SETUP 
G.1 Equipment used for measurements: 
1.   Agilent 33250A Function generator 
2.   Tektronix TDS3052B Oscilloscope 
3.   Three Topward 3306D DC power supplies 
4.   Fluke 179 Multimeter  
5.   New Focus 1414 high-speed photodetector (FC connectorized)  
6.   Thorlabs F810FC-1550 fiber collimator 
7.   Keithley Integrating sphere 2500INT-2-IGAC and 2500 dual photodiode meter  
8.   Single mode fiber (SMF-28) 1m with FC/APC termination 
9.   Matched high-speed cables with SMA (50 Ohm) connectors 
10.  BNC cables with 50 Ohm termination 

Figure 3a. Power supply connection setup 
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Figure 3b. Optical light source signal measurement setup  

 
 

 
Figure 3c.  Optical light source power measurement setup 
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G.2. Setup for Measurements: 
 
This section explains the procedure to connect and setup the DL-US551502G-L01 series 
evaluation board as shown in Figure 3a to 3c. Ensure proper Electrostatic Discharge 
(ESD) precautionary measures are taken before handling the evaluation board and sensitive 
electronic equipment. The IR light source meets the calculated AEL Class 3R limits. 
Precautionary care has to be taken to avoid continuous viewing of the direct beam. 
Adequate eye protection against laser radiation should be used while handling and 
operating the device. 
 
Default Factory Setup: 
 
1. Set Topward 3306D DC Power Supply 1 to 7V output and 1A current limit. Connect J1-

3 to the negative terminal and J1-4 to the positive terminal. Turn on the DC Power 
Supply 1 and this will power up the LD driver of the evaluation board.  

2. Set Topward 3306D DC power supply 2 to 9V and 1A. Connect J1-5 and J1-6 to the 
negative and positive terminal. Turn on the DC Power Supply 3. Set the Agilent 33250A 
function generator with square pulse of amplitude=2Vp-p, frequency=100kHz and Pulse 
width=500ns (TTL/CMOS logic levels). Connect the signal output from J2 (SMA) to the 
output of the function generator and this will turn on the IR light source.  

3. Guide the collimated light output from the SWIR light source into the New Focus 1414 
high-speed photodetector using the Thorlabs F810FC-1550 fiber connector. Connect 
the monitor output to the input of the Tektronix TDS3052B Oscilloscope using matched 
high-speed cable. Refer to Figure 3b for the measurement setup. Measure the following 
parameter from the oscilloscope: 

i) Rise time and fall time  
ii) Pulse width 
iii) Pulse repetition rate  

A typical trace of pulse is shown in Figure 4. Measure TP6, TP7 and TP8 using Fluke 
179 multimeter. The reading should be similar to the value recorded in measurement 
report attached during shipment. Fine-tune the pulse width by adjusting the VR3 if it 
varies from the setting. To measure the voltage across the SWIR light source, obtain 
the voltage difference between TP4 (TP3 as GND) and TP5 (TP2 as GND) using 
Tektronix TDS3052B Oscilloscope. The reading should be ~2 to 3V. 

4.  Refer to Figure 3c for the measurement setup of optical power output. Guide the light 
directly into the Keithley Integrating sphere 2500INT-2-IGAC and read the photocurrent 
from Keithley 2500 dual photodiode meter. The peak pulse power is >150mW. 
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Figure 4.  Scope trace of (a) Single pulse (b) Pulse train, with pulse width=10ns and 
repetition rate =100kHz. 

  
LD Current Pulse Width Tuning: 
 
The pulse width of the current that drive the SWIR light source can be tuned via variable 
resistors VR1 and VR3. VR1 controls the current IIBI, flowing into IBI pin of IXLD02 high-
speed LD driver IC that is used as a baseline current with respect to IIPW current to 
compensate for internal delays. Whereas, VR3 controls the current IIPW, flowing into IPW pin 
of IXLD02 high speed LD driver IC that is used to tune the SWIR light source current pulse 
width. Turning the VR1 and VR3 in clockwise direction will reduce the IIBI and IIPW, while anti-
clockwise will increase both values. The voltage across VR1 and VR3 can be monitored via 
TP6 and TP8 respectively. The value of IIBI should be higher than IIPI. If IIPW=IIBI, the pulse 
width is 0. As IIPW approaches IIBI but less than IIBI, the pulse width becomes smaller. Figure 
5 illustrates the relationship of current pulse width tPW versus IIPW with respect to IIBI.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Current pulse width versus IPW current (Abstracted from page 5 of IXL02 Ultra 
high-speed laser diode driver IC specification from Directed Energy Inc)  

 

X-axis:10ns/DIV
Y-axis:5mV/DIV

 

 

(a) 
 

tPW

X-axis:5µs/DIV
Y-axis:5mV/DIV

 

 

(b) 
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LD Current Tuning: 
 
The output current that drive the SWIR light source can be tuned via variable resistors VR2. 
VR2 controls the current IIOP, flowing into IOP pin of IXLD02 high-speed LD driver IC that is 
used to tune the driving current. The voltage across VR2 can be monitored via TP7, while 
the voltage across the IR light source can be obtained from the measurement of voltage 
difference between TP4 (TP3 as GND) and TP5 (TP2 as GND) using Tektronix TDS3052B 
Oscilloscope. 
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H. BILL OF MATERIALS 
 
Item Part number Manufactuerer Description Qty
U2 SN74AHC08PW Texas Instruments Incorp.(1) AND Gates, TSSOP-PW-14 1 
U3 LT1721CGN Linear Technology Corp.(2) Comparator, SSOP-DBQ-16 1 

U5 IXLD02SI Direct Energy Inc (3) High speed LD driver IC, SO28 1 
U6 GS8DI25104 IXYSRF (4) Schottky diode, SOIC-DEI-8 1 
D2 D3 PDS760 Diodes Incorporated (5) Schottky barrier rectifier, POWERDI5 2 
R9      0 Ohm resistor, 603 1 
R5     1k Ohm resistor, 603 1 
R6     3.9k Ohm resistor, 603 1 
R17     10 Ohm resistor, 603 1 
R1     49.9 Ohm resistor, 603 1 
R7     510 Ohm resistor, 603 1 
R8     620 Ohm resistor, 603 1 
R42     909 Ohm resistor, 603 1 
R13 R15     20k Ohm resistor, 1206 2 
R14     3.3k Ohm resistor, 1206 1 
R2 R3 R4     3.3 Ohm resistor, 1206 3 
R22 R23 R25 R26 R27 R28 R36 R37 
R38 R39 R40 R41     20 Ohm resistor, 2010 12 
VR1 VR2 VR3      1k Ohm Variable resistor, PV36Y 3 
C4 C10 C11      0.1uF Capacitor, 603 3 
C68 C69     0.47uF Capacitor, 603 2 
C14     1nF Capacitor, 603 1 
C5 C6     0.01uF Capacitor, 603 2 
C43 C44 C45 C46 C48 C49 C50 C51     0.01uF Capacitor, 805 8 
C13 C54 C55 C56 C57     0.1uF Capacitor, 805 5 
C66     0.47uF, 50V Capacitor, 805 1 
C1 C2 C3 C12 C15 C16 C17 C19 
C21 C22 C24 C27 C28 C30 C32 C58 
C59 C60 C61     0.47uF, 50V Capacitor, 1206 19 
C31 C33 C35 C36 C62 C63 C64 C65 
C67 C70     10uF, 16V Capacitor, 1210 10 
C9 C40     330uF, 16V Capacitor CASE_D 2 
L1 L3 L4 BLM41PG181SN1 Murata Manufacturing Co.(6) EMI Suppression Filter, 1806 3 
L5 L8     10uH Inductor, CDRH6D28 2 
J1 SL 3.5/8/90G Weidmuller (7) Header 8, 8-PIN CON - 1937554 1 
J2     SMA 1 

 
Notes: 
 

1. Texas Instruments Incorp.: www.ti.com 
2. Linear Technology Corp.: www.linear.com 
3. Directed Energy Inc: www.directedenergy.com 
4. IXYSRF: www.ixysrf.com 
5. Diodes Incorp.: www.diodes.com 
6. Murata Manufacturing Co.: www.murata.com www.diodes.com 
7. Weidmuller: www.weidmuller.com 
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DISCLAIMER 
 
Read though this manual carefully before using the Short-Wavelength-Infrared 
Superluminescent LED (SWIR-SLED). 
 
DenseLight Semiconductors Pte Ltd is not liable in any way for damages or injuries that may 
result from the use or misuse of this product. Upon purchase and receipt of this product the 
customer is entirely responsible for any personal or property damage that may result from the 
use or misuse of this product. 
 
 
 
 
1. OPERATION SPECIFICATION 
 
1.1 Absolute Maximum Ratings 
 
Refer to the specifications and the outgoing testing report attached to the SWIR-SLED. Do 
not operate or expose the SWIR-SLED to extreme conditions exceeding the specified 
absolute maximum ratings.  
 
Caution: Operating beyond the absolute maximum ratings may cause permanent 
damages to the device. Exposure to absolute maximum rating condition for extended 
periods may affect device reliability. DenseLight declines any responsibilities of the 
damages arising from operating beyond the absolute maximum ratings specified for 
each model, unless otherwise agreed by DenseLight in writing. 
 
 
1.2 Optical/Electrical Specification 
 
Each SWIR-SLED is tested and meets the requirements at the specific conditions as 
specified for each model.  

  
Caution: Use of device other than those specified herein and within instruction manual 
may result in hazardous laser radiation exposure.  
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2. PACKAGE TYPE 
 

 

 
 
Note: Specification and drawings described in this publication are to be considered 
illustrations in nature and not to scale. DenseLight reserves the rights to change the 
specifications without prior notice. 

Pin 
Assignment 

Description 

1 N/C 
2 N/C 
3 SLED Cathode (-) 
4 SLED Anode (+) 
5 SLED Cathode (-) 
6 Thermistor 
7 Thermistor 

Bottom View 
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3. EYE SAFETY CLASSIFICATION 
 
The SWIR-SLED meets the calculated AEL Class 3R limits. Precautionary care has to be 
taken to avoid continuous viewing of the direct beam. 
 
Adequate eye protection against laser radiation should be used while handling and operating 
the device. 
 
Note: Class3R is defined as hazardous under direct and specula reflection viewing, 
diffuse reflection usually not hazardous, normally not a fire hazard and CW upper limit 
is 0.5W. 
 
 
4. ELECTROSTATIC DISCHARGE 
 
The SWIR-SLED is an Electrostatic Discharge (ESD) sensitive component and should be 
handled in static safe area.  
 
Grounded wrist strap is to be worn at all times when manually handling the SWIR-SLED. 
 
In operating SWIR-SLED, sufficient surge protection measures are required. Surge current is 
easily generated during power ON/OFF and output adjustment. 
 
 
 
5. THERMAL MANAGEMENT 
 
The SWIR-SLED is operated without thermoelectric cooler (TEC). It shall at no time be 
operated without proper heat sinking. The selection of the heatsink depends on the SWIR-
SLED model and the actual application, with the consideration of thermal load and the 
ambient temperature as well as the convection. The SWIR-SLED module shall be securely 
attached to the heatsink with good thermal contact. The diode temperature can be monitored 
by the negative temperature coefficient (NTC) thermistor connected to Pin 6 and Pin 7.   
 
 
Note: The heat sink is recommended to be of thermal resistance better than (≤)  
 

maxmax

max

−−

−

⋅

−

FF

Ambientop

VI
TT

 (oC/W).  

 
Where Top-max, IF-max, VF-max, ITEC-max, VTEC-max are the maximum ratings of the operational case 
temperature, operating current and forward voltage of the diode respectively. Please refer to 
the specification data sheet or the outgoing report (OGR) for the values. 
 
Example:  
Ambient temperature of 35oC, natural convection, and the specified maximum rated case 
temperature of 40oC, max operating current of 350mA and max forward voltage of 1.5V. 
Therefore, the thermal resistance of the heat sink is recommended to be ≤ 9.5 oC/W. 
 
Caution: Insufficient heat sinking or poor thermal contact to the heatsink may cause 
overheating of the TOSA casing. Extended period of operating under this condition 
may cause permanent damage to the SWIR-SLED. 
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6. OPERATING INSTRUCTIONS OF SWIR-SLED USING STANDARD 
COMMERCIAL LD DRIVER 
 
6.1 Description 
 
This section explains the procedure to connect and setup the SWIR-SLED using standard 
commercial LD driver. Ensure proper ESD precautionary measures are taken before handling 
the SWIR-SLED and sensitive electronic equipment. Precautionary care has to be taken to 
avoid continuous viewing of the direct beam. Adequate eye protection against laser radiation 
should be used while handling and operating the device. 
 
Configure the SWIR-SLED according to the pin assignment of the TOSA as specified (Refer 
to page 4 of this user manual or pin assignment enclosed in OGR). Attach heat sink to the 
TOSA for thermal heat dissipation. Secure the pins and the TOSA to ensure good electrical 
and thermal conductivity. 
 
To solder the leads to the electrical connections on printed circuit board (PCB), it is 
recommended to take as minimum an amount of time as possible. Do not exceed the 
soldering heat of 260oC, 10s. We recommend the TOSA to be attached to heat sink during 
soldering. 
 
Caution: The soldering temperatures apply only to the leads, not to the entire TOSA. 
The TOSA temperature shall not exceed the maximum temperature of the TOSA (refer 
to the specification). The TOSA shall not be taken for reflow soldering in the oven. 
 
 
6.2 Measurement Setup 
 
Typical commercial standard equipment used for measurements: 
1. Keithley integrating sphere 2500INT-2-IGAC and 2500 dual photodiode meter    
2.    Keithley 2420 CW LD driver 
3.    Keithley 2520 pulse LD driver 
4.    ANDO A6317B optical spectrum analyzer (OSA) 
5.    Agilent 33250A function generator 
6.    Tektronix TDS3052B Oscilloscope 
7.    New Focus 1414 high-speed photodetector (FC connectorized)  
8.    Thorlabs F810FC-1550 fiber collimator 
9.    Single mode fiber (SMF-28) 1m with FC/APC termination 
10.  Matched high-speed cables with SMA (50 Ohm) connectors 
11.   BNC cables with 50 Ohm termination 
 
 
Setup for Measurements: 
 
1. Figure 1a shows the optical power output measurement. Drive the SWIR-SLED using 

Keithley 2420 CW LD driver for CW operation and Keithley 2520 pulse LD driver for 
pulse operation. Guide the light directly into the Keithley Integrating sphere 2500INT-
2-IGAC and read the photocurrent from Keithley 2500 dual photodiode meter. The 
optical power should be similar to the report value in the OGR.  

2. To check the light source signal, drive the SWIR-SLED using Keithley 2520 pulse LD 
driver. Guide the collimated light output from the SWIR light source into the New 
Focus 1414 high-speed photodetector using the Thorlabs F810FC-1550 fiber 
connector. Connect the monitor output to the input of the Tektronix TDS3052B 
Oscilloscope using matched high-speed cable. Refer to Figure 1b for the 
measurement setup. The following parameter can be measured from the 
oscilloscope: 

i) Rise time and fall time  
ii) Pulse width 
iii) Pulse repetition rate 
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3. The optical spectrum of the SWIR-SLED can be obtained by driving the SWIR-SLED 
using Keithley 2420 CW LD driver and guiding the light through SMF-28 into the 
ANDO A6317B OSA.  The measurement setup is shown in Figure 1c.  

 
 

 
 

Figure 1a.  Optical light source power measurement setup 
 
 

 
 

Figure 1b.  Optical light source signal measurement setup 
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Figure 1c.  Optical spectrum measurement setup 
 
 
 
 
7. OPERATING INSTRUCTIONS OF SWIR-SLED USING DENSELIGHT 
EVALUATION BOARD  
 
7.1 Description 
 
DenseLight has designed a DL-CS551502G-L01-Eval evaluation board to offer a platform for 
customers to evaluate the SWIR-SELD. The board is complete with the essential drive 
electronics to support a comprehensive range of testing with minimal external electronics 
instrumentations. The evaluation unit (Figure 2) shows an example of how the SWIR-SLED 
can be clamped on the evaluation board for thermal dissipation, with short leads for low-
inductance high-speed pulse driving of the SLED light output over various range of power 
levels, pulse width and pulse repetition rate.  
 
 

 
 
Figure 2a. Evaluation board bottom-side where 
the TO-8 TOSA SWIR light source is mounted 

 
 
Figure 2b. Evaluation board top side where 
most of the electronic components are mounted
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7.2 Physical Dimensions and Mechanical Specification 

 
 
 

 
 
 

Figure 3a. Top Side Mechanical Layout 
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Figure 3b. Bottom Side Mechanical Layout* 
 
 

* a) Orientation to Top-Side: Reference board mounting holes identifiers A, B, C, D 
        b)  SWIR-SLED light emitting point is identified by “X” 
 
 
 
 
 
 
 

100mm

75mm
12

0m
m 10

0m
m

60mm

60mm

DIA 4mm 
(4x)

B

D 

A 

C 



Doc #: 418-0041-01-004-07-001               APPENDIX C 
8 September 2007, Rev A 

6 Changi North Street 2, Singapore (498831), SINGAPORE. 
Tel. (65)-6415-7988, Fax. (65)-6415-4488. e-mail: info@denselight.com 

http://www.denselight.com 
 

Page C11 of C16

7.3 Pin Assignment and Function 
 
 
 
Label Connector Type Pin No. Description 

1 NC 
2 NC 
3 Power supply ground 
4 +7V D.C. 
5 Power supply ground 
6 +9V D.C. 
7 NC 

J1 8-pin Header 

8 NC 
J2 SMA    External Trigger Input (CMOS/TTL compatible) 
TP1 Test Point Connector - 
TP2 Test Point Connector GND 
TP3 Test Point Connector GND 
TP4 Test Point Connector To monitor light source Anode voltage 
TP5 Test Point Connector To monitor light source Cathode voltage 

TP6 Test Point Connector 

To monitor voltage across VR1 that control the current 
IIBI, flowing into IBI pin of IXLD02** high-speed LD 
driver IC that used as a baseline current with respect 
to IIPW current to compensate for internal delays 

TP7 Test Point Connector 
To monitor voltage across VR2 that control the current 
IIOP, flowing into IOP pin of IXLD02 high-speed LD 
driver IC that used to tune the LD current 

TP8 Test Point Connector 
To monitor voltage across VR3 that control the current 
IIPW, flowing into IPW pin of IXLD02 high-speed LD 
driver IC that used to tune the LD current pulse width 

 
 
Note: 
**Refer to data sheet of IXLD02 at www.directedenergy.com/poudcts/ics.htm 
 
 
Caution: Do not apply reverse voltage to pins as this might cause permanent damage 
to the evaluation board 
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7.4 Measurement Setup 
 
Equipment used for measurements: 
 
1.   Agilent 33250A Function generator 
2.   Tektronix TDS3052B Oscilloscope 
3.   Three Topward 3306D DC power supplies 
4.   Fluke 179 Multimeter  
5.   New Focus 1414 high-speed photodetector (FC connectorized)  
6.   Thorlabs F810FC-1550 fiber collimator 
7.   Keithley Integrating sphere 2500INT-2-IGAC and 2500 dual photodiode meter  
8.   Single mode fiber (SMF-28) 1m with FC/APC termination 
9.   Matched high-speed cables with SMA (50 Ohm) connectors 
10.  BNC cables with 50 Ohm termination 
 
 

 
 

Figure 4a. Power supply connection setup 
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Figure 4b. Optical light source signal measurement setup  

 
 

 
Figure 4c.  Optical light source power measurement setup 
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Setup for Measurements: 
 
This section explains the procedure to connect and setup the evaluation board as shown in 
Figure 4a to 4c. Ensure proper ESD precautionary measures are taken before handling the 
evaluation board and sensitive electronic equipment. Precautionary care has to be taken to 
avoid continuous viewing of the direct beam. Adequate eye protection against laser radiation 
should be used while handling and operating the device. 
 
Default Factory Setup: 
 
 

1. Set Topward 3306D DC Power Supply 1 to 7V output and 1A current limit. Connect 
J1-3 to the negative terminal and J1-4 to the positive terminal. Turn on the DC Power 
Supply 1 and this will power up the LD driver of the evaluation board. Measure TP6, 
TP7 and TP8 using Fluke 179 multimeter. The reading should be similar to the value 
recorded in OGR attach during shipment.  

2. Set Topward 3306D DC power supply 2 to 9V and 1A. Connect J1-5 and J1-6 to the 
negative and positive terminal. Turn on the DC Power Supply 3. Set the Agilent 
33250A function generator with square pulse of amplitude=2Vp-p, frequency=100kHz 
and Pulse width=500ns (TTL/CMOS logic levels). Connect the signal output from J2 
(SMA) to the output of the function generator and this will turn on the IR light source.  

3. Guide the collimated light output from the SWIR light source into the New Focus 1414 
high-speed photodetector using the Thorlabs F810FC-1550 fiber connector. Connect 
the monitor output to the input of the Tektronix TDS3052B Oscilloscope using 
matched high-speed cable. Refer to Figure 4b for the measurement setup. Measure 
the following parameter from the oscilloscope: 

iv) Rise time and fall time 
v) Pulse width 
vi) Pulse repetition rate 

A typical trace of pulse is shown in Figure 5. Measure TP6, TP7 and TP8 using Fluke 
179 multimeter. The reading should be similar to the value recorded in OGR attached 
during shipment. Fine-tune the pulse width by adjusting the VR3 if it varies from the 
setting. To measure the voltage across the SWIR light source, obtain the voltage 
difference between TP4 (TP3 as GND) and TP5 (TP2 as GND) using Tektronix 
TDS3052B Oscilloscope. The reading should be ~2 to 3V. 

4.  Refer to Figure 4c for the measurement setup of optical power output. Guide the light 
directly into the Keithley Integrating sphere 2500INT-2-IGAC and read the 
photocurrent from Keithley 2500 dual photodiode meter. The peak pulse power is 
>150mW. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Scope trace of (a) Single pulse (b) Pulse train, with pulse width=10ns and 
repetition rate =100kHz. 
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7.5 LD Current Pulse Width Tuning: 
 
The pulse width of the current that drive the SWIR light source can be tuned via variable 
resistors VR1 and VR3. VR1 controls the current IIBI, flowing into IBI pin of IXLD02 high-
speed LD driver IC that is used as a baseline current with respect to IIPW current to 
compensate for internal delays. Whereas, VR3 controls the current IIPW, flowing into IPW pin 
of IXLD02 high speed LD driver IC that is used to tune the SWIR light source current pulse 
width. Turning the VR1 and VR3 in clockwise direction will reduce the IIBI and IIPW, while 
anti-clockwise will increase both values. The voltage across VR1 and VR3 can be monitored 
via TP6 and TP8 respectively. The value of IIBI should be higher than IIPI. If IIPW=IIBI, the 
pulse width is 0. As IIPW approaches IIBI but less than IIBI, the pulse width becomes smaller. 
Figure 6 illustrates the relationship of current pulse width tPW versus IIPW with respect to 
IIBI.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Current pulse width versus IPW current (Abstracted from page 5 of IXL02 Ultra 
high-speed laser diode driver IC specification from Directed Energy Inc)  

 
 
7.6 LD current tuning: 
 
The output current that drive the SWIR light source can be tuned via variable resistors VR2. 
VR2 controls the current IIOP, flowing into IOP pin of IXLD02 high-speed LD driver IC that is 
used to tune the driving current. The voltage across VR2 can be monitored via TP7, while the 
voltage across the IR light source can be obtained from the measurement of voltage 
difference between TP4 (TP3 as GND) and TP5 (TP2 as GND) using Tektronix TDS3052B 
Oscilloscope.  
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8. MORE INFORMATION AND TECHNICAL SUPPORT 
 
Please contact DenseLight Semiconductor Pte Ltd for further information and 
technical support. 
 
 
 
9. REVISION CONTROL 
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